Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generalized Direct Change Estimation in Ising Model Structure (1606.05302v1)

Published 16 Jun 2016 in math.ST, cs.LG, and stat.TH

Abstract: We consider the problem of estimating change in the dependency structure between two $p$-dimensional Ising models, based on respectively $n_1$ and $n_2$ samples drawn from the models. The change is assumed to be structured, e.g., sparse, block sparse, node-perturbed sparse, etc., such that it can be characterized by a suitable (atomic) norm. We present and analyze a norm-regularized estimator for directly estimating the change in structure, without having to estimate the structures of the individual Ising models. The estimator can work with any norm, and can be generalized to other graphical models under mild assumptions. We show that only one set of samples, say $n_2$, needs to satisfy the sample complexity requirement for the estimator to work, and the estimation error decreases as $\frac{c}{\sqrt{\min(n_1,n_2)}}$, where $c$ depends on the Gaussian width of the unit norm ball. For example, for $\ell_1$ norm applied to $s$-sparse change, the change can be accurately estimated with $\min(n_1,n_2)=O(s \log p)$ which is sharper than an existing result $n_1= O(s2 \log p)$ and $n_2 = O(n_12)$. Experimental results illustrating the effectiveness of the proposed estimator are presented.

Citations (26)

Summary

We haven't generated a summary for this paper yet.