Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Learning with Darwin: Evolutionary Synthesis of Deep Neural Networks (1606.04393v3)

Published 14 Jun 2016 in cs.CV, cs.LG, cs.NE, and stat.ML

Abstract: Taking inspiration from biological evolution, we explore the idea of "Can deep neural networks evolve naturally over successive generations into highly efficient deep neural networks?" by introducing the notion of synthesizing new highly efficient, yet powerful deep neural networks over successive generations via an evolutionary process from ancestor deep neural networks. The architectural traits of ancestor deep neural networks are encoded using synaptic probability models, which can be viewed as the DNA' of these networks. New descendant networks with differing network architectures are synthesized based on these synaptic probability models from the ancestor networks and computational environmental factor models, in a random manner to mimic heredity, natural selection, and random mutation. These offspring networks are then trained into fully functional networks, like one would train a newborn, and have more efficient, more diverse network architectures than their ancestor networks, while achieving powerful modeling capabilities. Experimental results for the task of visual saliency demonstrated that the synthesizedevolved' offspring networks can achieve state-of-the-art performance while having network architectures that are significantly more efficient (with a staggering $\sim$48-fold decrease in synapses by the fourth generation) compared to the original ancestor network.

Citations (44)

Summary

We haven't generated a summary for this paper yet.