Papers
Topics
Authors
Recent
2000 character limit reached

Bayesian estimation of incompletely observed diffusions

Published 13 Jun 2016 in stat.ME | (1606.04082v2)

Abstract: We present a general framework for Bayesian estimation of incompletely observed multivariate diffusion processes. Observations are assumed to be discrete in time, noisy and incomplete. We assume the drift and diffusion coefficient depend on an unknown parameter. A data-augmentation algorithm for drawing from the posterior distribution is presented which is based on simulating diffusion bridges conditional on a noisy incomplete observation at an intermediate time. The dynamics of such filtered bridges are derived and it is shown how these can be simulated using a generalised version of the guided proposals introduced in Schauer et al. (2016).

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.