Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stability switches induced by immune system boosting in an SIRS model with discrete and distributed delays (1606.03962v1)

Published 13 Jun 2016 in math.DS

Abstract: We consider an epidemiological model that includes waning and boosting of immunity. Assuming that repeated exposure to the pathogen fully restores immunity, we derive an SIRS-type model with discrete and distributed delays. First we prove usual results, namely that if the basic reproduction number, $\mathcal{R}_0$, is less or equal than $1$, then the disease free equilibrium is globally asymptotically stable, whereas for $\mathcal{R}_0>1$ the disease persists in the population. The interesting features of boosting appear with respect to the endemic equilibrium, which can go through multiple stability switches by changing the key model parameters. We construct two-parameter stability charts, showing that increasing the delay can stabilize the positive equilibrium. Increasing $\mathcal{R}_0$, the endemic equilibrium can cross two distinct regions of instability, separated by Hopf-bifurcations. Our results show that the dynamics of infectious diseases with boosting of immunity can be more complex than most epidemiological models, and calls for careful mathematical analysis.

Summary

We haven't generated a summary for this paper yet.