Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neural Associative Memory for Dual-Sequence Modeling (1606.03864v2)

Published 13 Jun 2016 in cs.NE, cs.AI, cs.CL, and cs.LG

Abstract: Many important NLP problems can be posed as dual-sequence or sequence-to-sequence modeling tasks. Recent advances in building end-to-end neural architectures have been highly successful in solving such tasks. In this work we propose a new architecture for dual-sequence modeling that is based on associative memory. We derive AM-RNNs, a recurrent associative memory (AM) which augments generic recurrent neural networks (RNN). This architecture is extended to the Dual AM-RNN which operates on two AMs at once. Our models achieve very competitive results on textual entailment. A qualitative analysis demonstrates that long range dependencies between source and target-sequence can be bridged effectively using Dual AM-RNNs. However, an initial experiment on auto-encoding reveals that these benefits are not exploited by the system when learning to solve sequence-to-sequence tasks which indicates that additional supervision or regularization is needed.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Dirk Weissenborn (17 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.