Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Infinite dimensional weak Dirichlet processes and convolution type processes (1606.03828v1)

Published 13 Jun 2016 in math.PR

Abstract: The present paper continues the study of infinite dimensional calculus via regularization, started by C. Di Girolami and the second named author, introducing the notion of weak Dirichlet process in this context. Such a process X, taking values in a Banach space H, is the sum of a local martingale and a suitable orthogonal process. The concept of weak Dirichlet process fits the notion of convolution type processes, a class including mild solutions for stochastic evolution equations on infinite dimensional Hilbert spaces and in particular of several classes of stochastic partial differential equations (SPDEs). In particular the mentioned decomposition appears to be a substitute of an It{^o}'s type formula applied to f (t, X(t)) where f : [0, T ] $\times$ H $\rightarrow$ R is a C 0,1 function and X a convolution type processes.

Summary

We haven't generated a summary for this paper yet.