Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 33 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 85 tok/s
GPT OSS 120B 468 tok/s Pro
Kimi K2 203 tok/s Pro
2000 character limit reached

Maximal green sequences for quivers of finite mutation type (1606.03799v1)

Published 13 Jun 2016 in math.CO and math.RT

Abstract: In general, the existence of a maximal green sequence is not mutation invariant. In this paper we show that it is in fact mutation invariant for cluster quivers of finite mutation type. In particular, we show that a mutation finite cluster quiver has a maximal green sequence unless it arises from a once-punctured closed marked surface, or one of the two quivers in the mutation class of X7. We develop a procedure to explicitly find maximal green sequences for cluster quivers associated to arbitrary triangulations of closed marked surfaces with at least two punctures. As a corollary, it follows that any triangulation of a marked surface with boundary has a maximal green sequence. We also compute explicit maximal green sequences for exceptional quivers of finite mutation type.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)