Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

External Lexical Information for Multilingual Part-of-Speech Tagging (1606.03676v2)

Published 12 Jun 2016 in cs.CL

Abstract: Morphosyntactic lexicons and word vector representations have both proven useful for improving the accuracy of statistical part-of-speech taggers. Here we compare the performances of four systems on datasets covering 16 languages, two of these systems being feature-based (MEMMs and CRFs) and two of them being neural-based (bi-LSTMs). We show that, on average, all four approaches perform similarly and reach state-of-the-art results. Yet better performances are obtained with our feature-based models on lexically richer datasets (e.g. for morphologically rich languages), whereas neural-based results are higher on datasets with less lexical variability (e.g. for English). These conclusions hold in particular for the MEMM models relying on our system MElt, which benefited from newly designed features. This shows that, under certain conditions, feature-based approaches enriched with morphosyntactic lexicons are competitive with respect to neural methods.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)