Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Descent in algebraic $K$-theory and a conjecture of Ausoni-Rognes (1606.03328v2)

Published 10 Jun 2016 in math.KT and math.AT

Abstract: Let $A \to B$ be a $G$-Galois extension of rings, or more generally of $\mathbb{E}_\infty$-ring spectra in the sense of Rognes. A basic question in algebraic $K$-theory asks how close the map $K(A) \to K(B){hG}$ is to being an equivalence, i.e., how close algebraic $K$-theory is to satisfying Galois descent. An elementary argument with the transfer shows that this equivalence is true rationally in most cases of interest. Motivated by the classical descent theorem of Thomason, one also expects such a result after periodic localization. We formulate and prove a general result which enables one to promote rational descent statements as above into descent statements after periodic localization. This reduces the localized descent problem to establishing an elementary condition on $K_0(-)\otimes \mathbb{Q}$. As applications, we prove various descent results in the periodic localized $K$-theory, $TC$, $THH$, etc. of structured ring spectra, and verify several cases of a conjecture of Ausoni and Rognes.

Summary

We haven't generated a summary for this paper yet.