Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Simultaneous inference for misaligned multivariate functional data (1606.03295v3)

Published 10 Jun 2016 in stat.AP

Abstract: We consider inference for misaligned multivariate functional data that represents the same underlying curve, but where the functional samples have systematic differences in shape. In this paper we introduce a new class of generally applicable models where warping effects are modeled through nonlinear transformation of latent Gaussian variables and systematic shape differences are modeled by Gaussian processes. To model cross-covariance between sample coordinates we introduce a class of low-dimensional cross-covariance structures suitable for modeling multivariate functional data. We present a method for doing maximum-likelihood estimation in the models and apply the method to three data sets. The first data set is from a motion tracking system where the spatial positions of a large number of body-markers are tracked in three-dimensions over time. The second data set consists of height and weight measurements for Danish boys. The third data set consists of three-dimensional spatial hand paths from a controlled obstacle-avoidance experiment. We use the developed method to estimate the cross-covariance structure, and use a classification setup to demonstrate that the method outperforms state-of-the-art methods for handling misaligned curve data.

Summary

We haven't generated a summary for this paper yet.