Papers
Topics
Authors
Recent
2000 character limit reached

Data-driven parameterization of the generalized Langevin equation

Published 8 Jun 2016 in physics.comp-ph, cs.CE, and q-bio.QM | (1606.02596v2)

Abstract: We present a data-driven approach to determine the memory kernel and random noise in generalized Langevin equations. To facilitate practical implementations, we parameterize the kernel function in the Laplace domain by a rational function, with coefficients directly linked to the equilibrium statistics of the coarse-grain variables. We show that such an approximation can be constructed to arbitrarily high order and the resulting generalized Langevin dynamics can be embedded in an extended stochastic model without explicit memory. We demonstrate how to introduce the stochastic noise so that the second fluctuation-dissipation theorem is exactly satisfied. Results from several numerical tests are presented to demonstrate the effectiveness of the proposed method.

Citations (134)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.