Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Locally-Optimized Inter-Subject Alignment of Functional Cortical Regions (1606.02349v1)

Published 7 Jun 2016 in q-bio.NC and stat.ML

Abstract: Inter-subject registration of cortical areas is necessary in functional imaging (fMRI) studies for making inferences about equivalent brain function across a population. However, many high-level visual brain areas are defined as peaks of functional contrasts whose cortical position is highly variable. As such, most alignment methods fail to accurately map functional regions of interest (ROIs) across participants. To address this problem, we propose a locally optimized registration method that directly predicts the location of a seed ROI on a separate target cortical sheet by maximizing the functional correlation between their time courses, while simultaneously allowing for non-smooth local deformations in region topology. Our method outperforms the two most commonly used alternatives (anatomical landmark-based AFNI alignment and cortical convexity-based FreeSurfer alignment) in overlap between predicted region and functionally-defined LOC. Furthermore, the maps obtained using our method are more consistent across subjects than both baseline measures. Critically, our method represents an important step forward towards predicting brain regions without explicit localizer scans and deciphering the poorly understood relationship between the location of functional regions, their anatomical extent, and the consistency of computations those regions perform across people.

Citations (4)

Summary

We haven't generated a summary for this paper yet.