Regularity of Stochastic Kinetic Equations
Abstract: We consider regularity properties of stochastic kinetic equations with multiplicative noise and drift term which belongs to a space of mixed regularity ($Lp$-regularity in the velocity-variable and Sobolev regularity in the space-variable). We prove that, in contrast with the deterministic case, the SPDE admits a unique weakly differentiable solution which preserves a certain degree of Sobolev regularity of the initial condition without developing discontinuities. To prove the result we also study the related degenerate Kolmogorov equation in Bessel-Sobolev spaces and construct a suitable stochastic flow.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.