Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Ascoli property for function spaces (1606.01013v1)

Published 3 Jun 2016 in math.GN and math.FA

Abstract: The paper deals with Ascoli spaces $C_p(X)$ and $C_k(X)$ over Tychonoff spaces $X$. The class of Ascoli spaces $X$, i.e. spaces $X$ for which any compact subset $K$ of $C_k(X)$ is evenly continuous, essentially includes the class of $k_{\mathbb R}$-spaces. First we prove that if $C_p(X)$ is Ascoli, then it is $\kappa$-Fr\'echet-Urysohn. If $X$ is cosmic, then $C_p(X)$ is Ascoli iff it is $\kappa$-Fr'echet-Urysohn. This leads to the following extension of a result of Morishita: If for a \v{C}ech-complete space $X$ the space $C_p(X)$ is Ascoli, then $X$ is scattered. If $X$ is scattered and stratifiable, then $C_p(X)$ is an Ascoli space. Consequently: (a) If $X$ is a complete metrizable space, then $C_p(X)$ is Ascoli iff $X$ is scattered. (b) If $X$ is a \v{C}ech-complete Lindel\"of space, then $C_p(X)$ is Ascoli iff $X$ is scattered iff $C_p(X)$ is Fr\'echet-Urysohn. Moreover, we prove that for a paracompact space $X$ of point-countable type the following conditions are equivalent: (i) $X$ is locally compact. (ii) $C_k(X)$ is a $k_{\mathbb R}$-space. (iii) $C_k(X)$ is an Ascoli space. The Asoli spaces $C_k(X,[0,1])$ are also studied.

Summary

We haven't generated a summary for this paper yet.