Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Detecting Serial Dependence in Binomial Time Series II: Observation Driven Models (1606.00984v1)

Published 3 Jun 2016 in math.ST and stat.TH

Abstract: The detection of serial dependence in binary or binomial valued time series is difficult using standard time series methods, particularly when there are regression effects to be modelled. In this paper we derive score-type tests for detecting departures from independence in the directions of the GLARMA\ and BARMA\ type observation driven models. These score tests can easily be applied using a standard logistic regression and so may have appeal to practitioners who wish to initially assess the need to incorporate serial dependence effects. To deal with the nuisance parameters in some GLARMA models a supremum type test is implemented.

Summary

We haven't generated a summary for this paper yet.