Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the denominators of the Taylor coefficients of G-functions (1606.00706v1)

Published 2 Jun 2016 in math.NT

Abstract: Let $\sum_{n=0}\infty a_n zn\in \overline{\mathbb Q}[[z]]$ be a $G$-function, and, for any $n\ge0$, let $\delta_n\ge 1$ denote the least integer such that $\delta_n a_0, \delta_n a_1, ..., \delta_n a_n$ are all algebraic integers. By definition of a $G$-function, there exists some constant $c\ge 1$ such that $\delta_n\le c{n+1}$ for all $n\ge 0$. In practice, it is observed that $\delta_n$ always divides $D_{bn}{s} C{n+1}$ where $D_n=lcm{1,2, ..., n}$, $b, C$ are positive integers and $s\ge 0$ is an integer. We prove that this observation holds for any $G$-function provided the following conjecture is assumed: {\em Let $\mathbb{K}$ be a number field, and $L\in \mathbb{K}[z,\frac{d }{d z}]$ be a $G$-operator; then the generic radius of solvability $R_v(L)$ is equal to 1, for all finite places $v$ of $\mathbb{K}$ except a finite number.} The proof makes use of very precise estimates in the theory of $p$-adic differential equations, in particular the Christol-Dwork Theorem. Our result becomes unconditional when $L$ is a geometric differential operator, a special type of $G$-operators for which the conjecture is known to be true. The famous Bombieri-Dwork Conjecture asserts that any $G$-operator is of geometric type, hence it implies the above conjecture.

Summary

We haven't generated a summary for this paper yet.