2000 character limit reached
Small Values of Coefficients of a Half Lerch Sum (1605.09508v2)
Published 31 May 2016 in math.NT
Abstract: Andrews, Dyson and Hickerson proved many interesting properties of coefficients for a Ramanujan's $q$-hypergeometric series by relating it to real quadratic field $\Q(\sqrt{6})$ and using the arithmetic of $\Q(\sqrt{6})$, hence solved a conjecture of Andrews on the distributions of its Fourier coefficients. Motivated by Andrews's conjecture, we discuss an interesting $q$-hypergeometric series which comes from a Lerch sum and rank and crank moments for partitions and overpartitions. We give Andrews-like conjectures for its coefficients. We obtain partial results on the distributions of small values of its coefficients toward these conjectures.