Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust Beamforming in Cache-Enabled Cloud Radio Access Networks (1605.09321v3)

Published 30 May 2016 in cs.IT and math.IT

Abstract: Popular content caching is expected to play a major role in efficiently reducing backhaul congestion and achieving user satisfaction in next generation mobile radio systems. Consider the downlink of a cache-enabled cloud radio access network (CRAN), where each cache-enabled base station (BS) is equipped with limited-size local cache storage. The central computing unit (cloud) is connected to the BSs via a limited capacity backhaul link and serves a set of single-antenna mobile users (MUs). This paper assumes that only imperfect channel state information (CSI) is available at the cloud. It focuses on the problem of minimizing the total network power and backhaul cost so as to determine the beamforming vector of each user across the network, the quantization noise covariance matrix, and the BS clustering subject to imperfect channel state information and fixed cache placement assumptions. The paper suggests solving such a difficult, non-convex optimization problem using the semidefinite relaxation (SDR). The paper then uses the $\ell_0$-norm approximation to provide a feasible, sub-optimal solution using the majorization-minimization (MM) approach. Simulation results particularly show how the cache-enabled network significantly improves the backhaul cost especially at high signal-to-interference-plus-noise ratio (SINR) values as compared to conventional cache-less CRANs.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Oussama Dhifallah (8 papers)
  2. Hayssam Dahrouj (40 papers)
  3. Tareq Y. Al-Naffouri (164 papers)
  4. Mohamed-Slim Alouini (525 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.