Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fine tuning consensus optimization for distributed radio interferometric calibration (1605.09219v1)

Published 30 May 2016 in astro-ph.IM and cs.DC

Abstract: We recently proposed the use of consensus optimization as a viable and effective way to improve the quality of calibration of radio interferometric data. We showed that it is possible to obtain far more accurate calibration solutions and also to distribute the compute load across a network of computers by using this technique. A crucial aspect in any consensus optimization problem is the selection of the penalty parameter used in the alternating direction method of multipliers (ADMM) iterations. This affects the convergence speed as well as the accuracy. In this paper, we use the Hessian of the cost function used in calibration to appropriately select this penalty. We extend our results to a multi-directional calibration setting, where we propose to use a penalty scaled by the squared intensity of each direction.

Citations (18)

Summary

We haven't generated a summary for this paper yet.