Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The super-Virasoro singular vectors and Jack superpolynomials relationship revisited (1605.08621v1)

Published 27 May 2016 in math-ph, hep-th, and math.MP

Abstract: A recent novel derivation of the representation of Virasoro singular vectors in terms of Jack polynomials is extended to the supersymmetric case. The resulting expression of a generic super-Virasoro singular vector is given in terms of a simple differential operator (whose form is characteristic of the sector, Neveu-Schwarz or Ramond) acting on a Jack superpolynomial. The latter is indexed by a superpartition depending upon the two integers r,s that specify the reducible module under consideration. The corresponding singular vector (at grade rs/2), when expanded as a linear combination of Jack superpolynomials, results in an expression that (in addition to being proved) turns out to be more compact than those that have been previously conjectured. As an aside, in relation with the differential operator alluded to above, a remarkable property of the Jack superpolynomials at alpha=-3 is pointed out.

Citations (10)

Summary

We haven't generated a summary for this paper yet.