2000 character limit reached
On Free Field Realizations of $W(2,2)$-Modules (1605.08608v3)
Published 27 May 2016 in math.QA and math.RT
Abstract: The aim of the paper is to study modules for the twisted Heisenberg-Virasoro algebra $\mathcal H$ at level zero as modules for the $W(2,2)$-algebra by using construction from [J. Pure Appl. Algebra 219 (2015), 4322-4342, arXiv:1405.1707]. We prove that the irreducible highest weight ${\mathcal H}$-module is irreducible as $W(2,2)$-module if and only if it has a typical highest weight. Finally, we construct a screening operator acting on the Heisenberg-Virasoro vertex algebra whose kernel is exactly $W(2,2)$ vertex algebra.