Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive density estimation based on a mixture of Gammas (1605.08467v2)

Published 26 May 2016 in math.ST and stat.TH

Abstract: We consider the problem of Bayesian density estimation on the positive semiline for possibly unbounded densities. We propose a hierarchical Bayesian estimator based on the gamma mixture prior which can be viewed as a location mixture. We study convergence rates of Bayesian density estimators based on such mixtures. We construct approximations of the local H\"older densities, and of their extension to unbounded densities, to be continuous mixtures of gamma distributions, leading to approximations of such densities by finite mixtures. These results are then used to derive posterior concentration rates, with priors based on these mixture models. The rates are minimax (up to a log n term) and since the priors are independent of the smoothness the rates are adaptive to the smoothness.

Summary

We haven't generated a summary for this paper yet.