Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards optimal nonlinearities for sparse recovery using higher-order statistics (1605.08201v2)

Published 26 May 2016 in cs.IT, math.IT, and stat.ML

Abstract: We consider machine learning techniques to develop low-latency approximate solutions to a class of inverse problems. More precisely, we use a probabilistic approach for the problem of recovering sparse stochastic signals that are members of the $\ell_p$-balls. In this context, we analyze the Bayesian mean-square-error (MSE) for two types of estimators: (i) a linear estimator and (ii) a structured estimator composed of a linear operator followed by a Cartesian product of univariate nonlinear mappings. By construction, the complexity of the proposed nonlinear estimator is comparable to that of its linear counterpart since the nonlinear mapping can be implemented efficiently in hardware by means of look-up tables (LUTs). The proposed structure lends itself to neural networks and iterative shrinkage/thresholding-type algorithms restricted to a single iterate (e.g. due to imposed hardware or latency constraints). By resorting to an alternating minimization technique, we obtain a sequence of optimized linear operators and nonlinear mappings that converge in the MSE objective. The result is attractive for real-time applications where general iterative and convex optimization methods are infeasible.

Citations (3)

Summary

We haven't generated a summary for this paper yet.