Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Edge complexity of geometric graphs on convex independent point sets (1605.08066v2)

Published 24 May 2016 in cs.DM

Abstract: In this paper, we focus on a generalised version of Gabriel graphs known as Locally Gabriel graphs ($LGGs$) and Unit distance graphs ($UDGs$) on convexly independent point sets. $UDGs$ are sub graphs of $LGGs$. We give a simpler proof for the claim that $LGGs$ on convex independent point sets have $2n \log n + O(n)$ edges. Then we prove that unit distance graphs on convex independent point sets have $O(n)$ edges improving the previous known bound of $O(n \log n)$.

Summary

We haven't generated a summary for this paper yet.