Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Fast Convergence of Proximal Algorithms for SQRT-Lasso Optimization: Don't Worry About Its Nonsmooth Loss Function (1605.07950v6)

Published 25 May 2016 in cs.LG, math.OC, and stat.ML

Abstract: Many machine learning techniques sacrifice convenient computational structures to gain estimation robustness and modeling flexibility. However, by exploring the modeling structures, we find these "sacrifices" do not always require more computational efforts. To shed light on such a "free-lunch" phenomenon, we study the square-root-Lasso (SQRT-Lasso) type regression problem. Specifically, we show that the nonsmooth loss functions of SQRT-Lasso type regression ease tuning effort and gain adaptivity to inhomogeneous noise, but is not necessarily more challenging than Lasso in computation. We can directly apply proximal algorithms (e.g. proximal gradient descent, proximal Newton, and proximal Quasi-Newton algorithms) without worrying the nonsmoothness of the loss function. Theoretically, we prove that the proximal algorithms combined with the pathwise optimization scheme enjoy fast convergence guarantees with high probability. Numerical results are provided to support our theory.

Citations (11)

Summary

We haven't generated a summary for this paper yet.