Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Solution of linear ill-posed problems using random dictionaries (1605.07913v3)

Published 25 May 2016 in math.ST, stat.ME, stat.ML, and stat.TH

Abstract: In the present paper we consider application of overcomplete dictionaries to solution of general ill-posed linear inverse problems. In the context of regression problems, there has been enormous amount of effort to recover an unknown function using such dictionaries. One of the most popular methods, lasso and its versions, is based on minimizing empirical likelihood and unfortunately, requires stringent assumptions on the dictionary, the, so called, compatibility conditions. Though compatibility conditions are hard to satisfy, it is well known that this can be accomplished by using random dictionaries. In the present paper, we show how one can apply random dictionaries to solution of ill-posed linear inverse problems. We put a theoretical foundation under the suggested methodology and study its performance via simulations.

Citations (1)

Summary

We haven't generated a summary for this paper yet.