Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
123 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

The Legendre Transform in Modern Optimization (1605.07897v1)

Published 25 May 2016 in math.OC

Abstract: The Legendre transform (LET) is a product of a general duality principle: any smooth curve is, on the one hand, a locus of pairs, which satisfy the given equation and, on the other hand, an envelope of a family of its tangent lines. An application of the LET to a strictly convex and smooth function leads to the Legendre identity (LEID). For strictly convex and three times differentiable function the LET leads to the Legendre invariant (LEINV). Although the LET has been known for more then 200 years both the LEID and the LEINV are critical in modern optimization theory and methods. The purpose of the paper (survey) is to show the role of the LEID and the LEINV play in both constrained and unconstrained optimization.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)