Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Newton Method for Empirical Risk Minimization to Statistical Accuracy (1605.07659v1)

Published 24 May 2016 in cs.LG and math.OC

Abstract: We consider empirical risk minimization for large-scale datasets. We introduce Ada Newton as an adaptive algorithm that uses Newton's method with adaptive sample sizes. The main idea of Ada Newton is to increase the size of the training set by a factor larger than one in a way that the minimization variable for the current training set is in the local neighborhood of the optimal argument of the next training set. This allows to exploit the quadratic convergence property of Newton's method and reach the statistical accuracy of each training set with only one iteration of Newton's method. We show theoretically and empirically that Ada Newton can double the size of the training set in each iteration to achieve the statistical accuracy of the full training set with about two passes over the dataset.

Citations (31)

Summary

We haven't generated a summary for this paper yet.