Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

From the free boundary condition for Hele-Shaw to a fractional parabolic equation (1605.07591v1)

Published 24 May 2016 in math.AP

Abstract: We propose a method to determine the smoothness of sufficiently flat solutions of one phase Hele-Shaw problems. The novelty is the observation that under a flatness assumption the free boundary --represented by the hodograph transform of the solution- solves a nonlinear integro-differential equation. This nonlinear equation is linearized to a (nonlocal) parabolic equation with bounded measurable coefficients, for which regularity estimates are available. This fact is used to prove a regularity result for the free boundary of a weak solution near points where the solution looks sufficiently flat. More concretely, flat means that in a parabolic neighborhood of the point the solution lies between the solutions corresponding to two parallel flat fronts a small distance apart --a condition that only depends on the the local behavior of the solution. In a neighborhood of such a point, the free boundary is given by the graph of a function whose spatial gradient enjoys a universal H\"older estimate in both space and time.

Summary

We haven't generated a summary for this paper yet.