Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian Principal Component Regression model with spatial effects for forest inventory under small field sample size (1605.07439v3)

Published 24 May 2016 in stat.AP and stat.ME

Abstract: Remote sensing observations are extensively used for analysis of environmental variables. These variables often exhibit spatial correlation, which has to be accounted for in the calibration models used in predictions, either by direct modelling of the dependencies or by allowing for spatially correlated stochastic effects. Another feature in many remote sensing instruments is that the derived predictor variables are highly correlated, which can lead to unnecessary model over-training and at worst, singularities in the estimates. Both of these affect the prediction accuracy, especially when the training set for model calibration is small. To overcome these modelling challenges, we present a general model calibration procedure for remotely sensed data and apply it to airborne laser scanning data for forest inventory. We use a linear regression model that accounts for multicollinearity in the predictors by principal components and Bayesian regularization. It has a spatial random effect component for the spatial correlations that are not explained by a simple linear model. An efficient Markov chain Monte Carlo sampling scheme is used to account for the uncertainty in all the model parameters. We tested the proposed model against several alternatives and it outperformed the other linear calibration models, especially when there were spatial effects, multicollinearity and the training set size was small.

Summary

We haven't generated a summary for this paper yet.