Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pure Exploration of Multi-armed Bandit Under Matroid Constraints (1605.07162v3)

Published 23 May 2016 in cs.LG and cs.DS

Abstract: We study the pure exploration problem subject to a matroid constraint (Best-Basis) in a stochastic multi-armed bandit game. In a Best-Basis instance, we are given $n$ stochastic arms with unknown reward distributions, as well as a matroid $\mathcal{M}$ over the arms. Let the weight of an arm be the mean of its reward distribution. Our goal is to identify a basis of $\mathcal{M}$ with the maximum total weight, using as few samples as possible. The problem is a significant generalization of the best arm identification problem and the top-$k$ arm identification problem, which have attracted significant attentions in recent years. We study both the exact and PAC versions of Best-Basis, and provide algorithms with nearly-optimal sample complexities for these versions. Our results generalize and/or improve on several previous results for the top-$k$ arm identification problem and the combinatorial pure exploration problem when the combinatorial constraint is a matroid.

Citations (48)

Summary

We haven't generated a summary for this paper yet.