Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generative Choreography using Deep Learning (1605.06921v1)

Published 23 May 2016 in cs.AI, cs.LG, cs.MM, and cs.NE

Abstract: Recent advances in deep learning have enabled the extraction of high-level features from raw sensor data which has opened up new possibilities in many different fields, including computer generated choreography. In this paper we present a system chor-rnn for generating novel choreographic material in the nuanced choreographic language and style of an individual choreographer. It also shows promising results in producing a higher level compositional cohesion, rather than just generating sequences of movement. At the core of chor-rnn is a deep recurrent neural network trained on raw motion capture data and that can generate new dance sequences for a solo dancer. Chor-rnn can be used for collaborative human-machine choreography or as a creative catalyst, serving as inspiration for a choreographer.

Citations (71)

Summary

We haven't generated a summary for this paper yet.