Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nonnegative Matrix Factorization Requires Irrationality (1605.06848v2)

Published 22 May 2016 in cs.CC, cs.LG, and math.NA

Abstract: Nonnegative matrix factorization (NMF) is the problem of decomposing a given nonnegative $n \times m$ matrix $M$ into a product of a nonnegative $n \times d$ matrix $W$ and a nonnegative $d \times m$ matrix $H$. A longstanding open question, posed by Cohen and Rothblum in 1993, is whether a rational matrix $M$ always has an NMF of minimal inner dimension $d$ whose factors $W$ and $H$ are also rational. We answer this question negatively, by exhibiting a matrix for which $W$ and $H$ require irrational entries.

Citations (13)

Summary

We haven't generated a summary for this paper yet.