Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An inverse problem for the magnetic Schrödinger equation in infinite cylindrical domains (1605.06599v1)

Published 21 May 2016 in math.AP

Abstract: We study the inverse problem of determining the magnetic field and the electric potential entering the Schr\"odinger equation in an infinite 3D cylindrical domain, by Dirichlet-to-Neumann map. The cylindrical domain we consider is a closed waveguide in the sense that the cross section is a bounded domain of the plane. We prove that the knowledge of the Dirichlet-to-Neumann map determines uniquely, and even H\"older-stably, the magnetic field induced by the magnetic potential and the electric potential. Moreover, if the maximal strength of both the magnetic field and the electric potential, is attained in a fixed bounded subset of the domain, we extend the above results by taking finitely extended boundary observations of the solution, only.

Summary

We haven't generated a summary for this paper yet.