Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Functional Hashing for Compressing Neural Networks (1605.06560v1)

Published 20 May 2016 in cs.LG and cs.NE

Abstract: As the complexity of deep neural networks (DNNs) trend to grow to absorb the increasing sizes of data, memory and energy consumption has been receiving more and more attentions for industrial applications, especially on mobile devices. This paper presents a novel structure based on functional hashing to compress DNNs, namely FunHashNN. For each entry in a deep net, FunHashNN uses multiple low-cost hash functions to fetch values in the compression space, and then employs a small reconstruction network to recover that entry. The reconstruction network is plugged into the whole network and trained jointly. FunHashNN includes the recently proposed HashedNets as a degenerated case, and benefits from larger value capacity and less reconstruction loss. We further discuss extensions with dual space hashing and multi-hops. On several benchmark datasets, FunHashNN demonstrates high compression ratios with little loss on prediction accuracy.

Citations (4)

Summary

We haven't generated a summary for this paper yet.