Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dimensions of irreducible modules for partition algebras and tensor power multiplicities for symmetric and alternating groups (1605.06543v2)

Published 20 May 2016 in math.RT and math.CO

Abstract: The partition algebra $\mathsf{P}k(n)$ and the symmetric group $\mathsf{S}_n$ are in Schur-Weyl duality on the $k$-fold tensor power $\mathsf{M}_n{\otimes k}$ of the permutation module $\mathsf{M}_n$ of $\mathsf{S}_n$, so there is a surjection $\mathsf{P}_k(n) \to \mathsf{Z}_k(n) := \mathsf{End}{\mathsf{S}_n}(\mathsf{M}_n{\otimes k}),$ which is an isomorphism when $n \ge 2k$. We prove a dimension formula for the irreducible modules of the centralizer algebra $\mathsf{Z}_k(n)$ in terms of Stirling numbers of the second kind. Via Schur-Weyl duality, these dimensions equal the multiplicities of the irreducible $\mathsf{S}_n$-modules in $\mathsf{M}_n{\otimes k}$. Our dimension expressions hold for any $n \geq 1$ and $k\ge0$. Our methods are based on an analog of Frobenius reciprocity that we show holds for the centralizer algebras of arbitrary finite groups and their subgroups acting on a finite-dimensional module. This enables us to generalize the above result to various analogs of the partition algebra including the centralizer algebra for the alternating group acting on $\mathsf{M}_n{\otimes k}$ and the quasi-partition algebra corresponding to tensor powers of the reflection representation of $\mathsf{S}_n$.

Citations (34)

Summary

We haven't generated a summary for this paper yet.