Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The fate of non-polynomial interactions in scalar field theory (1605.06075v3)

Published 19 May 2016 in hep-th, cond-mat.stat-mech, and hep-ph

Abstract: We present an exact RG (renormalization group) analysis of $O(N)$-invariant scalar field theory about the Gaussian fixed point. We prove a series of statements that taken together show that the non-polynomial eigen-perturbations found in the LPA (local potential approximation) at the linearised level, do not lead to new interactions, \textit{i.e.} enlarge the universality class, neither in the LPA or treated exactly. Non-perturbatively, their RG flow does not emanate from the fixed point. For the equivalent Wilsonian effective action they can be re-expressed in terms of the usual couplings to polynomial interactions, which can furthermore be tuned to be as small as desired for all finite RG time. For the infrared cutoff Legendre effective action, this can also be done for the infrared evolution. We explain why this is nevertheless consistent with the fact that the large field behaviour is fixed by these perturbations.

Citations (21)

Summary

We haven't generated a summary for this paper yet.