Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Frobenius reciprocity and the Haagerup tensor product (1605.06023v2)

Published 19 May 2016 in math.OA and math.RT

Abstract: In the context of operator-space modules over C*-algebras, we give a complete characterisation of those C*-correspondences whose associated Haagerup tensor product functors admit left adjoints. The characterisation, which builds on previous joint work with N. Higson, exhibits a close connection between the notions of adjoint operators and adjoint functors. As an application, we prove a Frobenius reciprocity theorem for representations of locally compact groups on operator spaces: the functor of unitary induction for a closed subgroup H of a locally compact group G admits a left adjoint in this setting if and only if H is cocompact in G. The adjoint functor is given by Haagerup tensor product with the operator-theoretic adjoint of Rieffel's induction bimodule.

Summary

We haven't generated a summary for this paper yet.