Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian Variable Selection for Globally Sparse Probabilistic PCA (1605.05918v2)

Published 19 May 2016 in stat.ML

Abstract: Sparse versions of principal component analysis (PCA) have imposed themselves as simple, yet powerful ways of selecting relevant features of high-dimensional data in an unsupervised manner. However, when several sparse principal components are computed, the interpretation of the selected variables is difficult since each axis has its own sparsity pattern and has to be interpreted separately. To overcome this drawback, we propose a Bayesian procedure called globally sparse probabilistic PCA (GSPPCA) that allows to obtain several sparse components with the same sparsity pattern. This allows the practitioner to identify the original variables which are relevant to describe the data. To this end, using Roweis' probabilistic interpretation of PCA and a Gaussian prior on the loading matrix, we provide the first exact computation of the marginal likelihood of a Bayesian PCA model. To avoid the drawbacks of discrete model selection, a simple relaxation of this framework is presented. It allows to find a path of models using a variational expectation-maximization algorithm. The exact marginal likelihood is then maximized over this path. This approach is illustrated on real and synthetic data sets. In particular, using unlabeled microarray data, GSPPCA infers much more relevant gene subsets than traditional sparse PCA algorithms.

Citations (23)

Summary

We haven't generated a summary for this paper yet.