Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

How to test for partially predictable chaos (1605.05616v4)

Published 18 May 2016 in nlin.CD, cond-mat.dis-nn, and physics.comp-ph

Abstract: For a chaotic system pairs of initially close-by trajectories become eventually fully uncorrelated on the attracting set. This process of decorrelation may split into an initial exponential decrease, characterized by the maximal Lyapunov exponent, and a subsequent diffusive process on the chaotic attractor causing the final loss of predictability. The time scales of both processes can be either of the same or of very different orders of magnitude. In the latter case the two trajectories linger within a finite but small distance (with respect to the overall extent of the attractor) for exceedingly long times and therefore remain partially predictable. Tests for distinguishing chaos from laminar flow widely use the time evolution of inter-orbital correlations as an indicator. Standard tests however yield mostly ambiguous results when it comes to distinguish partially predictable chaos and laminar flow, which are characterized respectively by attractors of fractally broadened braids and limit cycles. For a resolution we introduce a novel 0-1 indicator for chaos based on the cross-distance scaling of pairs of initially close trajectories, showing that this test robustly discriminates chaos, including partially predictable chaos, from laminar flow. One can use furthermore the finite time cross-correlation of pairs of initially close trajectories to distinguish, for a complete classification, also between strong and partially predictable chaos. We are thus able to identify laminar flow as well as strong and partially predictable chaos in a 0-1 manner solely from the properties of pairs of trajectories.

Summary

We haven't generated a summary for this paper yet.