Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Derivatives at the Boundary for Analytic Lipschitz Functions (1605.05196v2)

Published 17 May 2016 in math.CV and math.FA

Abstract: We consider the behaviour of holomorphic functions on a bounded open subset of the plane, satisfying a Lipschitz condition with exponent $\alpha$, with $0<\alpha<1$, in the vicinity of an exceptional boundary point where all such functions exhibit some kind of smoothness. Specifically, we consider the relation between the abstract idea of a bounded point derivation on the algebra of such functions and the classical complex derivative evaluated as a limit of difference quotients. We show that whenever such a bounded point derivation exists at a boundary point $b$, it may be evaluated by taking a limit of classical difference quotients, for approach from a set having full area density at $b$.

Summary

We haven't generated a summary for this paper yet.