Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Word2Vec is a special case of Kernel Correspondence Analysis and Kernels for Natural Language Processing (1605.05087v3)

Published 17 May 2016 in cs.LG and cs.CL

Abstract: We show that correspondence analysis (CA) is equivalent to defining a Gini index with appropriately scaled one-hot encoding. Using this relation, we introduce a nonlinear kernel extension to CA. This extended CA gives a known analysis for natural language via specialized kernels that use an appropriate contingency table. We propose a semi-supervised CA, which is a special case of the kernel extension to CA. Because CA requires excessive memory if applied to numerous categories, CA has not been used for natural language processing. We address this problem by introducing delayed evaluation to randomized singular value decomposition. The memory-efficient CA is then applied to a word-vector representation task. We propose a tail-cut kernel, which is an extension to the skip-gram within the kernel extension to CA. Our tail-cut kernel outperforms existing word-vector representation methods.

Citations (2)

Summary

We haven't generated a summary for this paper yet.