Papers
Topics
Authors
Recent
Search
2000 character limit reached

Word2Vec is a special case of Kernel Correspondence Analysis and Kernels for Natural Language Processing

Published 17 May 2016 in cs.LG and cs.CL | (1605.05087v3)

Abstract: We show that correspondence analysis (CA) is equivalent to defining a Gini index with appropriately scaled one-hot encoding. Using this relation, we introduce a nonlinear kernel extension to CA. This extended CA gives a known analysis for natural language via specialized kernels that use an appropriate contingency table. We propose a semi-supervised CA, which is a special case of the kernel extension to CA. Because CA requires excessive memory if applied to numerous categories, CA has not been used for natural language processing. We address this problem by introducing delayed evaluation to randomized singular value decomposition. The memory-efficient CA is then applied to a word-vector representation task. We propose a tail-cut kernel, which is an extension to the skip-gram within the kernel extension to CA. Our tail-cut kernel outperforms existing word-vector representation methods.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.