Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Higher order unfitted FEM for Stokes interface problems (1605.04085v1)

Published 13 May 2016 in math.NA

Abstract: We consider the discretization of a stationary Stokes interface problem in a velocity-pressure formulation. The interface is described implicitly as the zero level of a scalar function as it is common in level set based methods. Hence, the interface is not aligned with the mesh. An unfitted finite element discretization based on a Taylor-Hood velocity-pressure pair and an XFEM (or CutFEM) modification is used for the approximation of the solution. This allows for the accurate approximation of solutions which have strong or weak discontinuities across interfaces which are not aligned with the mesh. To arrive at a consistent, stable and accurate formulation we require several additional techniques. First, a Nitsche-type formulation is used to implement interface conditions in a weak sense. Secondly, we use the ghost penalty stabilization to obtain an inf-sup stable variational formulation. Finally, for the highly accurate approximation of the implicitly described geometry, we use a combination of a piecewise linear interface reconstruction and a parametric mapping of the underlying mesh. We introduce the method and discuss results of numerical examples.

Summary

We haven't generated a summary for this paper yet.