Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Simple, Scalable and Accurate Posterior Interval Estimation (1605.04029v2)

Published 13 May 2016 in stat.CO, math.ST, and stat.TH

Abstract: There is a lack of simple and scalable algorithms for uncertainty quantification. Bayesian methods quantify uncertainty through posterior and predictive distributions, but it is difficult to rapidly estimate summaries of these distributions, such as quantiles and intervals. Variational Bayes approximations are widely used, but may badly underestimate posterior covariance. Typically, the focus of Bayesian inference is on point and interval estimates for one-dimensional functionals of interest. In small scale problems, Markov chain Monte Carlo algorithms remain the gold standard, but such algorithms face major problems in scaling up to big data. Various modifications have been proposed based on parallelization and approximations based on subsamples, but such approaches are either highly complex or lack theoretical support and/or good performance outside of narrow settings. We propose a very simple and general posterior interval estimation algorithm, which is based on running Markov chain Monte Carlo in parallel for subsets of the data and averaging quantiles estimated from each subset. We provide strong theoretical guarantees and illustrate performance in several applications.

Summary

We haven't generated a summary for this paper yet.