Papers
Topics
Authors
Recent
2000 character limit reached

Destination Prediction by Trajectory Distribution Based Model

Published 10 May 2016 in stat.ML | (1605.03027v1)

Abstract: In this paper we propose a new method to predict the final destination of vehicle trips based on their initial partial trajectories. We first review how we obtained clustering of trajectories that describes user behaviour. Then, we explain how we model main traffic flow patterns by a mixture of 2d Gaussian distributions. This yielded a density based clustering of locations, which produces a data driven grid of similar points within each pattern. We present how this model can be used to predict the final destination of a new trajectory based on their first locations using a two step procedure: We first assign the new trajectory to the clusters it mot likely belongs. Secondly, we use characteristics from trajectories inside these clusters to predict the final destination. Finally, we present experimental results of our methods for classification of trajectories and final destination prediction on datasets of timestamped GPS-Location of taxi trips. We test our methods on two different datasets, to assess the capacity of our method to adapt automatically to different subsets.

Citations (82)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.