Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On locally coherent hearts (1605.02658v3)

Published 9 May 2016 in math.CT

Abstract: We show that, under particular conditions, if a t-structure in the unbounded derived category of a locally coherent Grothendieck category restricts to the bounded derived category of its category of finitely presented objects, then its heart is itself a locally coherent Grothendieck category. Those particular conditions are always satisfied when the Grothendieck category is arbitrary and one considers the t-structure associated to a torsion pair in the category of finitely presented objects. They are also satisfied when one takes any compactly generated t-structure in the derived category of a commutative noetherian ring which restricts to the bounded derived category of finitely generated modules. As a consequence, any t-structure in this latter bounded derived category has a heart which is equivalent to the category of finitely presented objects of some locally coherent Grothendieck category.

Summary

We haven't generated a summary for this paper yet.