Papers
Topics
Authors
Recent
2000 character limit reached

Frequency-Selective Vandermonde Decomposition of Toeplitz Matrices with Applications

Published 9 May 2016 in cs.IT and math.IT | (1605.02431v3)

Abstract: The classical result of Vandermonde decomposition of positive semidefinite Toeplitz matrices, which dates back to the early twentieth century, forms the basis of modern subspace and recent atomic norm methods for frequency estimation. In this paper, we study the Vandermonde decomposition in which the frequencies are restricted to lie in a given interval, referred to as frequency-selective Vandermonde decomposition. The existence and uniqueness of the decomposition are studied under explicit conditions on the Toeplitz matrix. The new result is connected by duality to the positive real lemma for trigonometric polynomials nonnegative on the same frequency interval. Its applications in the theory of moments and line spectral estimation are illustrated. In particular, it provides a solution to the truncated trigonometric $K$-moment problem. It is used to derive a primal semidefinite program formulation of the frequency-selective atomic norm in which the frequencies are known {\em a priori} to lie in certain frequency bands. Numerical examples are also provided.

Citations (29)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.