The Expressive Power of k-ary Exclusion Logic
Abstract: In this paper we study the expressive power of k-ary exclusion logic, EXC[k], that is obtained by extending first order logic with k-ary exclusion atoms. It is known that without arity bounds exclusion logic is equivalent with dependence logic. By observing the translations, we see that the expressive power of EXC[k] lies in between k-ary and (k+1)-ary dependence logics. We will show that, at least in the case of k=1, the both of these inclusions are proper. In a recent work by the author it was shown that k-ary inclusion-exclusion logic is equivalent with k-ary existential second order logic, ESO[k]. We will show that, on the level of sentences, it is possible to simulate inclusion atoms with exclusion atoms, and this way express ESO[k]-sentences by using only k-ary exclusion atoms. For this translation we also need to introduce a novel method for "unifying" the values of certain variables in a team. As a consequence, EXC[k] captures ESO[k] on the level of sentences, and we get a strict arity hierarchy for exclusion logic. It also follows that k-ary inclusion logic is strictly weaker than EXC[k]. Finally we will use similar techniques to formulate a translation from ESO[k] to k-ary inclusion logic with strict semantics. Consequently, for any arity fragment of inclusion logic, strict semantics is more expressive than lax semantics.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.