Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
51 tokens/sec
GPT-4o
60 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
8 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Leveraging Visual Question Answering for Image-Caption Ranking (1605.01379v2)

Published 4 May 2016 in cs.CV

Abstract: Visual Question Answering (VQA) is the task of taking as input an image and a free-form natural language question about the image, and producing an accurate answer. In this work we view VQA as a "feature extraction" module to extract image and caption representations. We employ these representations for the task of image-caption ranking. Each feature dimension captures (imagines) whether a fact (question-answer pair) could plausibly be true for the image and caption. This allows the model to interpret images and captions from a wide variety of perspectives. We propose score-level and representation-level fusion models to incorporate VQA knowledge in an existing state-of-the-art VQA-agnostic image-caption ranking model. We find that incorporating and reasoning about consistency between images and captions significantly improves performance. Concretely, our model improves state-of-the-art on caption retrieval by 7.1% and on image retrieval by 4.4% on the MSCOCO dataset.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Xiao Lin (181 papers)
  2. Devi Parikh (129 papers)
Citations (82)