Papers
Topics
Authors
Recent
2000 character limit reached

Finite dimensional Hopf actions on algebraic quantizations

Published 2 May 2016 in math.QA and math.RA | (1605.00560v3)

Abstract: Let k be an algebraically closed field of characteristic zero. In joint work with J. Cuadra [arxiv.org/abs/1409.1644, arxiv.org/abs/1509.01165], we showed that a semisimple Hopf action on a Weyl algebra over a polynomial algebra k[z_1,...,z_s] factors through a group action, and this in fact holds for any finite dimensional Hopf action if s=0. We also generalized these results to finite dimensional Hopf actions on algebras of differential operators. In this work we establish similar results for Hopf actions on other algebraic quantizations of commutative domains. This includes universal enveloping algebras of finite dimensional Lie algebras, spherical symplectic reflection algebras, quantum Hamiltonian reductions of Weyl algebras (in particular, quantized quiver varieties), finite W-algebras and their central reductions, quantum polynomial algebras, twisted homogeneous coordinate rings of abelian varieties, and Sklyanin algebras. The generalization in the last three cases uses a result from algebraic number theory, due to A. Perucca.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.